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Abstract—Free convective condensation with noncondensable gas on an isothermal vertical surface is

studied under the condition of thermal equilibrium. An analysis is made by use of equations of a liquid

film and boundary layers adjoining the liquid film and including small droplets generated by condensation,

condensable and noncondensable gases. The calculation is made in the range of 1-99 per cent weight frac-

tions of condensable gas. The result shows that Nusselt number asymptotically approaches those of free

convection and film condensation at both extremes, and the phenomenon treated here intermediates free
convection and film condensation along a vertical plate.

NOMENCLATURE oy mass transfer coefficient [m/s ];
thermal diffusivity [m?/s]; B, thermal coefficient of volumetric expan-
specific heat at constant pressure of liquid sion [1/°K]:
[kcal/kg°C]: y,  specific weight [kg/m3];
specific heat at constant pressure of gas 4, boundary layer thickness {m];
[kcal/kg°C]; A6, temperature difference in liquid film [°C]:
diffusion coefficient [m?/s]: A, thermal conductivity [kcal/ms°C];
non-dimensional quantity of latent heat p, viscosity [kg/ms];
=L/c,T: v, kinematic viscosity [m?/s];
gravitational acceleration [m/s?]: p, weight per unit volume [kg/m31.
Grashof number = gBATX*/1?;
enthalpy [kcal/kg]: Suffixes
latent heat [kcal/kg]: g, non-condensable gas;
mass flux [kg/m?s]: I, liquid;
molecular weight; n, thermodynamic nonequilibrium condi-
Nusselt number ; tion;
pressure [kg/m?]; 0, gas-liquid interface;
Prandt] number = v/a; v, condensing gas;
heat flux [kcal/m?s]; x, function of x;
Schmidt number = +/D: w, wall;
Sherwood number = «,,x/D: oo, main flow,
temperature [°K ]:
velocity in x direction [m/s]: 1. INTRODUCTION
velocity in y direction [m/s]: NUMEROUS papers have reported on the subject
weight concentration of vapour; of film condensation heat transfer since the
rectangular co-ordinate [m]: pioneering work of Nusselt in 1916. Since then,
rectangular co-ordinate [m]; it has been known that both heat and mass
weight concentration of liquid droplets; transfer fluxes decrease greatly when vapour
heat transfer coefficient [kcal/m?s°C]; contains a small amount of noncondensable gas.
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2230 YASUO MORI and
With the condensation of vapor to a liquid film,
noncondensable gas mixed with the vapor
close to the liquid film, and constructs a resistive
layer which prevents the vapor to move to the
film. This is the cause of reduction of heat and
mass transfer rates when condensing vapour
contains noncondensable gas.

Applying a boundary layer theory to the resis-
tive layer outside the liquid film when vapor
includes a great deal of noncondensable gas,
Sparrow and others [1] computed an exact
solution of free convective condensation heat
transfer with noncondensable gas. Also, Rose [2]
analyzed the same problem with the boundary
layer integration method, and concluded that
the approximate equation agreed fairly well to
the exact solution. In these analysis. mass con-
servation equations for noncondensable gas
and condensing vapour are used and no con-
sideration is given to the relation between the
concentration and the temperature of the con-
densing gas, the so called “saturation condition ™.
The assumptions they adopted are nearly
correct when the relative humidity of the vapor
in the main flow is low (high superheat), but are
irrelevant when the influences of noncondensable
gas are dominant, i.e. the condensation of low
superheat or saturated vapor. In other words, in
the analysis reported so far, there is a thermo-
dynamical nonequilibrium, that is, the concen-
tration of the condensing vapor at a certain point
in a boundary layer is larger than the saturated
concentration of condensing vapor correspond-
ing to the temperature of that point (super
saturation). From a thermodynamical stand-
point, such a state is unstable, but the following
state is stable and practical, in which the super
saturated part of the vapors is dispersed in the
vapor as liquid droplets, and the concentration
of vapor is kept at the saturation concentration
of the temperature at that point.

From this point of view, in this paper we
analysethe condensing phenomena of a saturated
vapor with a noncondensable gas alonga vertical
surface, assuming there is a liquid film and a gas
phase boundary layer containing small droplets
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in which the thermodynamic equilibrium is kept
between the vapor and the liquid droplets, and
we study the effects of the noncondensable gas on
condensation heat transfer.

2. THEORETICAL ANALYSIS

2.1 Background of the theory

First, we consider the two-phase boundary
layer covering the liquid film which is the basis of
this study. Figure 1 shows the relation between
temperature and concentration of condensing
vapor and of liquid droplets in the boundary
layer where the temperature varies. Curve 1
shows a thermodynamic equilibrium relation
between the temperature and vapor concentra-
tion for a steam-air mixture where steam whose
weight fraction is 0-972 at 100°C is cooled under
the constant total pressure. Due to the saturation
condition, with the decrease of temperature, the
concentration of steam decreases and a part of
steam condensates (liquid droplets), whose
weight fraction Yis shown by curve 2 in Fig. L.
In the past other analysis of condensation heat
transfer with a noncondensable gas, conserva-
tion equations for energy and condensing gas
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FREE CONVECTIVE CONDENSATION HEAT TRANSFER

are independently analyzed. So the relation
between temperature T and concentration Win
the layer is defined by the straight lines 3 or 4 in
Fig. 1, when the temperature at gas-liquid film
interface shows T (80°C), T (70°C). In this case
we assume Sc/Pr (Sc: Schmidt number, Pr:
Prandtl number) is 1, which means the same
boundary layer thicknesses of energy and con-
centration. Therefore, in the past other analysis,
there existed thermodynamical nonequilibrium
corresponding to the difference between curve 1
and curves 3, 4. Furthermore, straight lines 3 and
4 change into curves and approach curve 1 when
Sc/Pr is smaller than 1, and become even lower
than curve 1 for much smaller Sc/Pr. In this
case, the usual analysis seems to be more stable
in terms of thermodynamics. But the critical
value of the ratio Sc/Pr which makes curves 3, 4
lower than curve 1 depends on the kind of vapor
and the temperature difference between the main
steam and the gas-liquid film interface. When
Sc/Pr is larger than unity, curves 3 and 4 are
deeply curved in the middle and the degree of
nonequilibrium becomes greater. As shown in
Fig. 1, the greater the temperature difference
between the main stream and the gas-liquid
interface, the greater the degree of thermo-
dynamical nonequilibrium.

In the case of free convective condensation on
a vertical surface, which condition will really
occur, a thermodynamical equilibrium con-
dition or nonequilibrium one? If the thermo-
dynamical equilibrium condition is realized in
the boundary layer, a part of the supersaturated
vapor is condensed and many liquid droplets
appear, so if we light them, the scattered light
should be visible. Two cylinders having an
outer diameter 30¢, and a thickness of 1 mm are
exposed to a light, and the photos are shown in
Fig. 2. One of the cylinders is cooled inside by
ice and located in a room temperature, and the
other is not cooled. For the first one, the photo is
shown in the left picture of Fig. 2, and we can see
the scattered light by the minute liquid droplets
which are condensed in the gas around the cooled
cylinder. Therefore, even in the case of the
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condensation of steam contained in normal air,
it is more realistic to consider that the thermo-
dynamical equilibrium condition is satisfied in
the boundary layer. In this study, we analyze the
free convective condensation heat transfer
around a vertical flat surface assuming the
thermal equilibrium relation as shown by curve
1, in Fig. 1, between the temperature T and the
concentration of condensing vapor Win a non-
condensable gas.

2.2 Fundamental equation
An analytical model used in the analysis is
schematically shown in Fig. 3. We assume a thin

Goseous
state
P
Cool ing rm
surface
Woo

Grovity
force

. \Two phase
\ boundary loyer
Interface

Liquid film

F1G. 3. Schematic model of physical situation.

liquid film, having a thickness of §, on a vertical
cooled plate, and a gas-liquid droplet coexisting
two phase boundary layer of thickness & outside
the liquid film where the saturation condition is
satisfied. A coordinate x is along the interface
between the liquid film and the boundary layer
and a coordinate y is perpendicular to x.
Subscripts 0 and co mean values at y = 0 and
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y = oo, and the subscripts g, v and [ express
values of noncondensable gas, condensing vapor
and liquid, respectively: For the analysis, the
following assumptions are adopted:

(1) Shearing stress by gas flow has no effect on
the motion of the liquid film.

(2) Variation of the liquid film thickness along x
direction does not effect the gas-liquid droplet
coexisting (two phase) boundary layer.

(3) Boundary layer approximation canbe applied
to the two phase boundary layer.

(4) Specific weight of gas is negligible as com-
pared with that of liquid.

{5 Volume concentration of liquid droplets is
negligible.

(6) Total pressure is constant, and the density
change by the temperature variation is only
considered in the buovancy term of a momentum
equation.

(7) Physical properties are constant and values at
the wall temperature are used, and those of gas
mixture are determined by algebraic means of
weight fraction.

(8) Saturation condition is satisfied over the
whole area in the two-phase boundary layer.

The propriety of the above mentioned assump-
tions from (1) through (7) have already been
examined in many papers [3], so it will be
omitted here.

Concerning the liquid film, the Nusselt’s solu-
tion can be used as the assumptions (1) and (2). A
mass flux 77 and a heat flux ¢ across the interface
between the liquid film and the boundary layer
and a velocity at the interface i, are expressed as
functions of the liquid film thickness 9, as follows;

9/1 zd‘sz
1
51 dx (1
A0 3yaad  do, o
5, 8 vy dx
U = :,9;- 5 (3)

where A8 represents the temperature drop in the
liquid film.
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In the two phase boundary layer, the average
velocity of the gas phase and the velocity of the
liquid droplets are considered to be equal,
because liquid droplets of enormously small
diameter are made by condensation from the
gas phase, and the velocity of the gas phase is
slow. In this case, the fundamental equations
for the gas-liquid droplets coexisting boundary
layer are shown as follows:

Continuity equation of gas and liquid droplet
mixture is

o + pu} + ;; p+pJut =0 (4

Q”l 3

where p means the weight per unit volume, and
the letters without subscript express the values
for the mixture of non-condensable gas and
condensing vapor. Mean velocities of mixture
and mean specific weight are,

p=p,+p,
pU = Py + Pl P =P, + pr. (5

The velocities of the components of non-
condensable gas are given by Fick's law using a
binary diffusion coefficient D

pgltt — ) = pD - (‘;q)’

bn—vg)'—pDav( ) {5)

But the diffusion velocity in the x direction
can be neglected by assumption (3), so we get
U, =u, = u

The continuity equation of noncondensable
gas Is.

6 .

FolPgd) + v(pgvg = 0. (N
The momentum equation of gas and liquid

droplets mixture is,

-

¢ ¢
— {p + pou?} + = {(p + ppuv}
Exl(p pou} ey{(p pouv}

fu

2
(P‘f'PJ_?aa)g“f“F 5; 8
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The energy equation of the mixture is

é
F; {(pghg + pvhr + plhl) u}

é é .0
-+ 7 (phgv, + pho, + php} = —é’;la—y T 9

where h means enthalpy, and are given as follows
L is a latent heat for evaporation.

hg = Cpg(T— Tw), h[, = va(T— Tw), hl = Cl
x(T=T) —L. (10)

From assumption (8), a partial pressure of
condensing vapor P, is given as a function for
temperature only.

p. =f(T). (11)

We introduce new variables, the weight
fractions of condensing vapor W and of the
liquid droplets Y,

Pe yPi__#

wePe_ _b
pg+pv

P Pyt o, P
Using assumption (6). the weight fraction Wcan
be related to the partial pressure of the con-
densing vapor P,

(12)

__ (P/P(M/M)
1 -(P/P)1-M/M)
where M is a molecular weight. Upon con-

sidering these, equations (6)-(9), and (11) are
rewritten as follows:

w

(13)

S+ nu+La+no=0 (4
x éy

o*w
oy*

_f'_(l__W)uq._f;(l—W)v=—D (15
cx cy

-

S+ e+ —0%(1 + Yyur = {Y+ BT, —T)

ox

(Mg - MU)(Wuo - W) aZu
T AWM.+ WoM, }g trgz 19

2233

0

—[{Cpg + W(C,, —Cp) + (,Y}(T, - T)

0x
+ LY]u+ 6_; [1Cpp + W(C,, — C,y)
+ YT, - T) + LY]r
LT oW
= -2 - - (1
S35+ DG = Cp) (T = T (1)
W= F(T). (18)
The boundary condition at y = 0.
_ _ofy < D ew
R 1 — Wy 0yy=0
T=Ty,, W= W, = F(T,) (19)
and thosd at y = oo,
u=0 T=T, W=W_=F(T,), Y=0. (20

As the relation between Wand Tin equation (18)
is generally nonlinear, the analytical solution of
these equations is barely obtainable. Therefore,
in this study, the boundary layer integral
method is used. The following conditions are
used to determine the distribution of variables.

y=0; Y=Y,

u oT

y= 5 5 = J A=Y el

¥ < U =1, 3 0 X 0
W_o oo @
dy dy

So the distribution form are assumed as follows,

2 2
= VY = Yy
osfe )2 1)

Tw—T_<1 ;) Wo— W (1 y>2
AT ~— \ &/ “aw ~ \ g,

AT=T, - T,
AW =W, — W,

U@ = Uy,

22

where the subscript x means the function of x,

and ¢, is the thickness of the boundary layer.
The saturation condition by equation (18)

cannot be satisfied all through the boundary
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layer by the distribution in equation (22). As the
quantities near y = 0 are most important in the
integral method, an index of the temperature
distribution n in equation {22} is determined by a
differential of T and Y with y at y =0 as to
satisfy the saturation condition in equation (18).
That is, in Fig. 1, when T, is the interface
temperature of the liquid film, the distribution
assumed in equation (22) is coincident with
curve 1, at both sides and in the gradient at T..
As curve 1 is a very simple shape, this approxi-
mation is very good in all areas. By the method

above mentioned,
1 P\? M{.)
2=l =) (=
w2 \P) \u,,

(AW/AT) _
AW /'(1 oP,
— .Y >
x <AT);’ P 5T)y=0]= z

(OW/0T), <0

The index n is larger than 2, and the 2nd
derivative of Tcan exist at y = 0, as a finite value.
The distributions in equation {22) are substituted
into equations (14)-(17), and these equations
are integrated from y =0 to y =9, The
dependency of u, and , on x are determined so
that the power of x coincides in each term of
equations (14)~(17). In this calculation, we get
the results that ¢ is constant. u, = ax? and
8, = bx* v, is eliminated from the integrated
equations and they are arranged as follows.

R{V, — Yo} = Voll + Yo)

n=2

23)

(24
6o+ Din+3)n+ 4 Cho

0ipn + 6) + 1]
6 + D)(n + 5 (n + 6

Cpy = Cpe ¢ o
Zre T EPOAW + =% Yo b + EY,
- {( CPO ) " CFO 0} 0:}

C C n
= V| =2 + =1 Y, +EY]+-——— (25)
O[Cp{) Cpe 3] Q Pr()

[ 0ipin+H+ 1]
(

g2 1000 + o + 21e%)
216 + 1)
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+Y, 1250 +9¢ + 36(,,2)}
63(6¢p + 1)
60 + 1) 4 X
1 AW (M, — M Y,
+ g ¢ 9 2
L 1 3BAT< M )+ 35‘5?} ‘
where

6 + 1 R
. "‘(”’?ﬂ')“b“ Cpo=(1 -

+ WoCpoe Cpoo =1 = We)Cpy + W,C
AW AW 2
V = —— V= -~ =
R T 1 — W, Sc

E = L M= (1 WM + W._ M

T CodT = =y

and the heat flux and mass flux across the gas
and liquid film interface, and the velocity of the
interface are derived as follows,

1
m=(1+ YO)VOVO({—S— )
¥

1 1
. 4 ! e —_— F’
q pOCpowOAT< Pr. + VOE) (6) (28)

e = 400 VeX
T 6+ oy

Equating equations (27)-(29) to equations (1}
{3), we get three equations, and the six unknown
variables are determined from these three
equations and equations (24) and (26). In the
calculation, ¢ is given, and eliminating R from
equations (24) and (25), we get a quadratic
equation of Y,. The positive root of this equation
is the needed one and the two negative solutions
correspond to the super-heated state in a
boundary layer, namely curves 3 or 4 are under
the curve 1 in Fig 1, and this case is not con-
sidered in this analysis. By using the positive
solution of Y, R and §, are obtained from
equations (24) and (26), and §,. Af, ¢ are also
obtained. Using the value of ¢ thus obtained.

(27N

(29)
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the same procedure is carried until ¢ is con-
verged.

The heat flux and the mass flux are calculated
from equations (27) and (28), and Nusselt
number and Sherwood number are determined
as follows,
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Momentum equation:
100

R2< >+R(10) {1 Ll

21 3BAT

(550 ofS)ET o

_ﬁu__ = (n + ProEVp)A* (30) Wwhere the subscript n means the nonequilibrium
(Gr/4)? condition. From equations (33) and (34).
Sh 21+ Yy 1 Pr Pr
= At (31 =-{1-= =12
Grie (1 — Wy ) e, 3 (1 SC) or = 1 —-2e,. (36)
where
[ 1 AW ( M) N Y, ]
4 n+1 3[3AT M 3PAT (32)

L[ 10001 + 79 + 21¢%) N
21(60 + 1) o

3. RESULT

3.1 In the case of a small temperature difference

In order to study the essential differences
between this investigation where the thermo-
dynamic equilibrium condition is satisfied, and
the various analytical studies in the past where
the equilibrium condition is not considered, we
obtain the analytical results of both conditions
for a small temperature difference. In the case
of a small temperature difference, we can
neglect the interface velocity and condensing
velocity at the interface (¥ =0 v, =0). To
study the physical meaning of the analytical
solutions, weassume C,=C  =C and AW=Y,
= Vo = V,, = 0(¢). The fundamental equations
are shown without considering the thermo-
dynamical equilibrium condition, in the case
&, <1 where 1 —¢, is the ratio of a thermal
boundary layer thickness J; to a concentration
boundary layer thickness &,, that is 6,/5.

Continuity equation :

2
Rn = g.;(l + 2811) (33)

Energy equation:

2
R, = Pr (34)

125(1 + 99 + 3697 101 = 2¢ + Vo Yo0)
63(6¢ + 1)°

(60 + 1)

In the case of the thermal equilibrium condition,
n in equation (23) is rewritten as follows by the
Tayler expansion.

—> ((A W/AT))
(CW/ET) )y=0
(@*W/eT?)
=211+ AT | 3
[ (f FWIET) Jomso 7
Therefore, in the case of a small temperature
difference, it is regarded as n =2 in the first

order approximation.
The fundamental equations for the thermal

equilibrium condition are derived from
equations (24yto (26) for the small temperature
difference.
3 Yo 2
Ril —— ==
( AW) Sc (38)
L AW Y, 2
Rl - =-——=-2)==
( C,TﬂATAW) Pr (39)
100 1 AW M, —
R2 R [}
(21)+ (10) = [ METIY
AW Y, 1/Gr\{d.\*.
+3BATAW]( )(x) “0)
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The ratios of the mass flux and the heat flux in
equilibrium to those in a nonequilibrium con-
dition are equal to the ratio of the Nusselt
number and the Sherwood numbers in equili-
brium to those in a nonequilibrium condition
respectively, and they are shown as follows,

b7 Sh
fl_ 1+ (L/CI,T)F(Pr/Sc) }
Gn L +(L/C,DI(Pr/Sc){l + &,)
x (%?) {42)
where

I = AW/BAT = TAW/AT.

The boundary layer thickness ratio of non-
equilibrium to the equilibrium condition case
is given from equations (33)~(40)
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S wo Sh 1
ret{2)=y 2201
< <>) i Shy 2(”

g Nu
- = =1 4
d. Nu, 43)
2 Sey
o) el
> d, ) [(1 + PriSc)\ Pr,

L+ 105PA *m Sh ¢  Nu
1+ 1.055¢/)| m, Sh, 4, Nu,

1 Pr\® /Sc\ {1 + 1-05Pr\ |*
= [’é (l +§> (FJ«) (1 T 1-05&)} 49

I" < | means that the temperature difference in
the boundary layer plays more important roles
than the concentration difference; therefore,
the driving force of free convective motion is
given by the temperature difference and the
thermal boundary layer thickness of the non-

{1 — Pr/Sc)

M, - M,
1+F< g ) S

) I'Tswe prerso

b sn M
5. 1+ I(M, = M)/M x (I —¢,)
21 )
1+ _6 Pr s
x ( L a —Pr;’Sc)(UC,T)F)”Z s ( (1- Pr,/Sc)(L,fcpnf")-l -
[+ (L/C,DI(PrjSc) 20 1+ (L/C, DI (Pr/S¢)

We get the values of equations (41) and (42) by
use of equation (43). In equations (41)~43), the
parameter [’ plays a very important role.
Considering n = 2, and assuming the saturation
equation as P, = P, exp(—L/R,T), we get the
relation of

L M

=W,
I'=x71wn,

(44)
where R, is a gas constant of condensing vapor.

For the case of I’ <1 and I' > 1, equations
(41) and (42) are arranged as follows,

equilibrium case is equal to the boundary layer
thickness of the equilibrium one. For these
reasons, the heat fluxes of each case are equal.
but the mass fluxes are different. The mass flux
of the equilibrium case is smaller than that of
the nonequilibrium case by
Pr)
T se)

m, —m _ _1 ( {
m, 24
because the thickness of the concentration

boundary layer in equilibrium is J,, while that
for nonequilibriumis(l — e,)d, = (1/2 + Pr 25¢)
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4., from equation (36). But it is noted that these
relations can only be adapted to the case of
Sc > Pr, because in the case of Sc < Pr, the
condensing vapor is always in a superheated
state in the boundary layer. In an actual
calculation, the sign of the weight fraction of the
liquid droplets Y, at the interface shows the
realization of the gas-liquid droplets coexisting
boundary layer.

In the case of I' > 1, the concentration
difference plays an important role, and the
driving force of the convective motion is
caused by the concentration difference, and the
heat flux to the liquid film is produced by a
liberation of the latent heat due to the mass flux.
Therefore, the heat flux ratio 4/4, is equal to the
mass flux ratio m/r,. and is a function of Pr and
Sc.

i+
P03 kg/em?
: Numericai solution
e .O;____-==?= o
- Asympiotic b2
) o
[ soluton / Praos
- + /0.
09 — —— " q/G, mim,
Sce0'8, | "
7 =0, 2 2
—— =2, 3 ¥
o8 " It ) i
10 ! ! 10

FiG. 4. Relations between m/m,. §/§, and I' for AT — 0.

The variations of m/m, and §/4, against I are
shown in Fig. 4 for AT— 0, as Scis changed asa
parameter and Pr is 0-8. In Fig. 4, the solid line
represents the exact solutions of equations
(301132}, and the extreme limits at both sides
are obtained from (45) and (46). From Fig. 4,
we can understand that the accuracy of the
approximate solutions is very good. The used
physical properties, except Pr and Sc, are the
values of air and steam.

The dotted lines below I' = 008 are cor-
responding to the wall temperature below 0°C,
and liquid film cannot exist.
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3.2 In the case of a wide temperature difference
range

Considering steam as the condensing vapor,
and air as the noncondensable gas, we make a
numerical calculation by use of the physical
properties of steam and air. These results are
given as follows: In Fig 5 the values of
Nu/(Gr/4)* to the weight fraction W, of the
steam in the main flow, are indicated, where Nu
represents a local Nusselt number (xx/4) and
Gr is a Grashof number (gBATx>/v?). The solid
lines in Fig. S indicate the value when the inter-
face temperature T, is changed as a parameter.
The increase of Nu with the increase of Ty is
caused by the increase of the mass flux due to the
increase of the weight fraction of steam W,
at the interface. The reverse of this tendency at
large W, (at the point of W, =065 and

Solution of
film condensation

04~
(AT =1°C)7-38x10"—
(Ar-5°c)3-3ouo’—ll

(AT=20°C)H65x10°~

LOW ) Py

(n+2 oz = £ )4 e,/
GAT iS¢ ar I/'C// oo |

Gris
Z)

mwrGrray”

[ Or
— O-5788
Solution of
free convection
(3] i t 1 A
[v] 02 0-4 06 o8 0
W

FiG. 5. Relation betw ccn Nuj(Gr/4)* and weight fraction W,
of the steam in main flow.
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T, = 20°C, 40°C) 1s caused by the remarkable
effects of the thermal equilibrium condition.
The dot-dash lines in Fig. 5 show the changes of
Nu by W_, and AT is varied as a parameter.
Nu/(Gr/4)* = 05788 at W, =0 corresponds
to the exact solution of the free convective heat
transfer without condensation, and the values of
7-36 x 103, 330 x 10*° and 165 x 10° at
W, = 1 are corresponding to the solutions of a
film-wise condensation by Nusselt when the
temperature differences are 1, 5 and 20°C
respectively. In our analysis, we calculate from
W, = 001 to W = 099, and these results tend
to approach the well known solutions mentioned
above at both extreme limits as shown by
dotted lines. It reserves special emphasis that the
addition of the solution of free convection and
that of liquid film condensation to our result
makes Fig. 5 more meaningful as it not only
makes the relation between the two extreme
cases clear but includes many interesting cases
in the field of heat transfer. One interesting case
shown in this figure is the increase of the heat
flux by the presence of small condensing vapor
at a region near W, = 1, while the other one is
its decrease by the presence of little condensable
gas at a region near W, = |. The values of
Nu/(Gr/4)* and Sh/(Gr/4)* are shown relating
to the temperature difference between the
interface and the main flow, in Fig. 6 when T,

— e
———$h/Gria)*

P2 03 kg/cm®

F1G. 6. Vanaton of Nu/(Gr/4)' and Sh/(Gr/4)} with tem-
perature difference between interface and main flow.
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is a parameter. In the past other analysis using a
nonequilibrium condition. their values decrease
with the increase of AT, but in this study using a
saturation condition, this tendency to decrease
is only in a range of small ATand they increase at
high AT The weight fraction of the liquid
droplets on the interface Y, shows the effect of
the saturation conditions clearly. A relation of
Y, and AT'is shown in Fig. 7. when T, is varied
as a parameter. In the large temperature
difference region, Y, does not depend on T, and
increases exponentially with AT In the air-
steam system, Pr is larger than Sc (Pr = 07,
Sc = 0-6), so in the small temperature difference
region Y, is negative.

o™X

P=103 kg/cmZ

=96°C
= 84°C
= 68°C
= 52°C
= 36°C
= 20°C

oo pop
gigt gtgt g gl

6%
Ar, °C
Fi1G. 7. Relation between Y, and 47.

In order to indicate the variations of the heat
and the mass flux caused by the saturation
condition, the relations of m/m, and ¢/q, to
AT are shown in Figs. 8 and 9. The tendency of
§/g, to increase with the increase of AT is
nearly independent of T,, and §/4, becomes
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FiG. 8. Relation between mym, and 47.

nearly twice when AT is large. On the other
hand, m/m, decreases with the increase of ATin a
small T, region, and it increases with the
increase of AT in a large Tregion. In this region
m/m, is nearly equal to 4§/, because in the large
T,. ie. the large W, region, heat is mainly
transfered by the latent heat due to the mass
flux as mentioned above.

Usually, the heat flux near W, = 1isexpressed
by the ratio to that of a filmwise condensation by
Nusselt. The heat flux of the filmwise conden-

20

P =103 kg/em?

i-0f 1, 7= 96°C
2, Ip* 84°C

3, = 68°C

4, T,z 52°C

S, %= 36°C

05 6, T,* 20°C
. 1 i i 1 i d. 1

e} o] 20 30 40 $0 60 70 80 90 100

AT, °C
F1G. 9. Relation between §/g, and AT,
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sation on a vertical plate was given by
Rohsenow [4] who improved the theory of
Nusselt and the result is as follows,

3 3)%
e = {pg{u @C,AT} (LAT) } @)

4v)x

In Fig. 10, the relations between the ratio of ¢
obtained in this analysis to gy, in equation (47)
and AT are shown. In a small AT region, §/gy, is
reduced with the decrease of AT, because g is
proportional to (AT)%, and gy, is proportional to
(A% On the other hand, in a large AT region,
the decrease of §/gy, with the increase of AT is
caused by a reduction of the heat flux ¢ in this
analysis, as shown in Fig. 6.

/4,

W,=09730
O-ZN

L L L
0 10 20 30

AT, °C
Fi1G. 10. Relation between §/gy, and 4T

In [1], Sparrow said 10-20 per cent difference
existed between the theory and the experi-
ment, but in his analysis, there is no
consideration of the saturation condition. The
difference will be explained by taking into
account the thermodynamical equilibrium con-
dition proposed in this study.
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4, CONCLUSIONS

From the study on the free convective
condensation heat transfer around a vertical
flat plate containing non-condensable gas, the
following results are obtained :

(1) It should be pointed out that the thermo-
dynamical equilibrium condition has not been
considered in the temperature boundary layer
in the usual analysis. This study indicates that
the equilibrium condition has to be considered
in the actual phenomena.

{2) According to the above consideration, the
analysis is carried out by use of a boundary layer
integral method under the condition of a thermal
equilibrium condition for steam and air mixture.
The same calculation is made with no con-
sideration of the equilibrium condition, and the
results are discussed.

YASUO MORI and KUNIO HUJIKATA

(3) The effect of the concentration of the
condensable vapor on the heat flux are discussed.
and the solutions are obtained, which gradually
approach the solution for the free convection
heat transfer at W — 0 as the one extreme limit.
and they approach as the other extreme limit
the solutions for the film condensation heat
transfer at W — 1. Therefore, the heat transfer
performance in the whole region of the free
condensable heat transfer is shown in one figure
having and relating free convection and film
condensation as two extreme limits.
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TRANSFERT THERMIQUE POUR UNE CONDENSATION SUR SURFACE VERTICALE
EN PRESENCE DE GAZ INCONDENSABLE

Résumé——On étudie la condensation par convection libre sur une surface verticale isotherme dans les

conditions d’équilibre thermique et en présence de gaz incondensable. L’analyse est faite & partir des

équations du film liquide et de la couche limite adjacente, laqueile contient des petites gouttes générces par

condensation. Le calcul est conduit pour des fractions massiques de gaz condensabie comprises entre 1 et

99 pour cent. Les résultats montrent que la valeur du nombre de Nusselt approche asymptotiquement aux

deux extrémes celle de la convection naturelle et celle de la condensation en film, et que le phénoméne
étudié ici est intermédiaire.

WARMEUBERGANG BEI DER KONDENSATION AN EINER SENKRECHTEN FLACHE
UNTER FREIER KONVEKTION UND IN GEGENWART VON INERTGASEN

Zusammenfassung—Bei thermischem Gleichgewicht wurde die Kondensation unter freier Konvektion und
in Gegenwart von Inertgas an einer isothermen senkrechten Fliiche untersucht. Die Analyse schliesst ein
Gleichungen des F'lussigkeitsfitms und der Grenzschichten an diesem Film und beriicksichtigt dic Erzeugung
kleiner Tropfen sowie kondensierbares wie nichtkondensierbares Gas. Die Berechnungen erstrecken sich
auf den Bereich von 1-99 Gewichtsprozent kondensierbaren Gases. Das Ergebnis zeigt, dass sich die
Nusselt-Zahl asymptotisch den Werten fur freie Konvektion und Filmkondensation in beiden Extrem-
fallen nihert. Das hier behandelte Phinomen liegt zwischen den Fillen freier Konvektion und Film-
kondensation an einer senkrechten Wand.

CBOBOJHAA KOHBEKUUA NP KOHJEHCAIIMM HA BEPTUKAJBHON
CTEHKE IMPU HAJUYNU HEKOHJIEHCHUPVIOUIETOCA TA3A

Apnoranus—IIpy yCI0BUM TENJIOBOrO pPaBHOBECHA UCCJIEN0BAIACH CBOOOIHOKOHBEKTUBHAA
KOHEEHCAIMA HA WM30TEPMHMYECKO! BEePTHUHAJLHONR MOBEPXHOCTIL NpH HAIMYIMN HEROHIeH-
CHpYIO3eroca rasa. AHAAM3 MPOBOIMIICA C TIOMOLIbIO ypaBHeHMIT MHKUIKOH MIeHKI U 1pH-
MHKAIOIero K Heil NMOTPAHUYHOTO CJI0A, M YYMTHBAJI MeJKHE KamiH, ofpasyiomuecs npu
KOHZEHCAILMN, 3 TAKKe KOHZEHCUDYIOIMECA W HEKOHJIEeHCHDYIOUHMEeCH rasbl. Pacyersl nipo-
BOJMJMCH B IMATIA30HE BECOBHX KOHUEHTPAIHMH KOHAGHCHUDYIOLUXCA Ia30B OT 1 x0 99°,.
PeaynbTaThl MOKA3HBAKT, YTO UYUCIO Hycceabra acuUMOTOTHYECKH NpPUOIMMHAETCA K €ro
aHAYEHNAM TpU CBOGOIHQN KOHBEKIHMU ¥ neHoYHOl KOHZeHcaLn B 000HX mpejeax i HTO
paccmarprBaeMble 306Ch ABJIEHUA HAXONATCA B TPOMEIKYTHE MEIK1Y cBOOOIHONH KOHBeRIHeil 1
IIeHOYHON KOHIeHCcaumell BOOTb BePTHUHATHON NAACTHHBI.



